organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3,6-Dichloro-*N*-(4-fluorophenyl)picolinamide

Zhengde Tan,^a* Yi Bing,^a Shen Fang,^a Zhao Kai^b and Yang Yan^a

^aCollege of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, People's Republic of China, and ^bGuangxi Institute of Standards and Technology, Nanning 530022, People's Republic of China Correspondence e-mail: tzd0517@163.com

Received 7 June 2009; accepted 27 June 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.007 Å; *R* factor = 0.051; *wR* factor = 0.140; data-to-parameter ratio = 12.0.

In the title compound, $C_{12}H_7Cl_2FN_2O$, the dihedral angle between the phenyl and pyridine rings is 42.5 (2) Å and an intramolecular N-H···N hydrogen bond occurs. The crystal structure is stabilized by C-H···O, C-H···F and C-Cl short contacts.

Related literature

For the chemical and pharmacological properties of amides, see: Liu *et al.* (2005); Sladowska & Sieklucka-Dziuba (1999).

Experimental

Crystal data C₁₂H₇Cl₂FN₂O

 $M_r = 285.10$

Orthorhombic, $Pca2_1$ a = 24.921 (2) Å b = 4.3735 (6) Å c = 11.1723 (14) Å V = 1217.7 (2) Å³

Data collection

Bruker SMART CCD	5652 measured reflections
diffractometer	1959 independent reflections
Absorption correction: multi-scan	1582 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.066$
$T_{\min} = 0.796, \ T_{\max} = 0.852$	
Refinement	

$R[F^2 > 2\sigma(F^2)] = 0.051$	H-atom parameters constrained
$wR(F^2) = 0.140$	$\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$
S = 1.08	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$
1959 reflections	Absolute structure: Flack (1983),
163 parameters	826 Friedel pairs
1 restraint	Flack parameter: -0.04 (12)

Z = 4

Mo $K\alpha$ radiation

 $0.45 \times 0.33 \times 0.31 \text{ mm}$

 $\mu = 0.53 \text{ mm}^{-1}$

T = 298 K

Table 1

Hydrogen-bond geometry (Å, °).

	$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2 - H2 \cdots N1$ 0.86 2.17 2.606 (5) 111	$N2-H2\cdots N1$	0.86	2.17	2.606 (5)	111

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors thank the Science Foundation of Hunan Institute of Engineering for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2522).

References

- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Liu, W., Li, X. & Zhang, B. (2005). J. Org. Chem. 70, 295–297.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Sladowska, H. & Sieklucka-Dziuba, M. (1999). Farmaco, 54, 773-779.

supplementary materials

Acta Cryst. (2009). E65, o1758 [doi:10.1107/S1600536809024799]

3,6-Dichloro-N-(4-fluorophenyl)picolinamide

Z. Tan, Y. Bing, S. Fang, Z. Kai and Y. Yan

Comment

The chemical and pharmacological properties of acid amides have investigated extensively, owing to their chelating ability with metal ions and to their potentially beneficial chemical and biological activities (Liu *et al.*,2005; Sladowska *et al.*, 1999). As part of our studies on the synthesis and characterization of these compounds, we report here the synthesis and crystal structure of 3,6-dichloro-*N*-(4-fluorophenyl)picolinamide. The C=O bond length is 1.200 (5) Å, indicating that the molecule is in the keto form. In the crystal structure, the molecules are stabilized by intramolecular N—H···N hydrogen bonds and C—H···O, C—H···F, C—Cl short contact.(Table 1 and Fig 2)

Experimental

A solution of 3,6-dichloropicolinoyl chloride(10 mmol) in 50 ml toluene was added to a solution of 4-fluorobenzenamine (10 mmol) in 10 ml toluene. The reaction mixture was refluxed for 1 h with stirring then the resulting white precipitate was obtained by filtration, washed several times with ethanol and dried *in vacuo*(yield 90%). Elemental analysis calculated:*C*, 50.55; H, 2.47; N, 9.83%; found: C, 50.52; H, 2.49; N, 9.82%. Crystals were obtained by slow evaporation of a solution in methanol after one week.

Refinement

H atoms were placed geometrically and refined using a riding model, with C—H=0.93 Å, N—H=0.86 Å, respectively, and $U_{iso}(H) = 1.2U_{eq}(N)$ and $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms.

Fig. 2. Crystal packing of the title compound, showing the hydrogen bonds as dashed lines

3,6-Dichloro-N-(4-fluorophenyl)picolinamide

Crystal data

C₁₂H₇Cl₂FN₂O $M_r = 285.10$ Orthorhombic, *Pca*2₁ Hall symbol: P 2c -2ac a = 24.921 (2) Å b = 4.3735 (6) Å c = 11.1723 (14) Å V = 1217.7 (2) Å³ Z = 4

Data collection

Bruker SMART CCD diffractometer	1959 independent reflections
Radiation source: fine-focus sealed tube	1582 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.066$
T = 298 K	$\theta_{\text{max}} = 25.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.6^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -29 \rightarrow 26$
$T_{\min} = 0.796, \ T_{\max} = 0.852$	$k = -5 \rightarrow 5$
5652 measured reflections	$l = -13 \rightarrow 11$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.051$	$w = 1/[\sigma^2(F_o^2) + (0.0703P)^2 + 0.2751P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.140$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 1.08	$\Delta \rho_{max} = 0.21 \text{ e} \text{ Å}^{-3}$
1959 reflections	$\Delta \rho_{min} = -0.20 \text{ e } \text{\AA}^{-3}$
163 parameters	Extinction correction: SHELXL97 (Sheldrick, 2008)
1 restraint	Extinction coefficient: 0.064 (9)
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 826 Friedel pairs

 $F_{000} = 576$

 $\theta = 2.9 - 27.0^{\circ}$

 $\mu = 0.53 \text{ mm}^{-1}$ T = 298 K

Block, colorless

 $0.45 \times 0.33 \times 0.31 \text{ mm}$

 $D_{\rm x} = 1.555 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 1638 reflections

Secondary atom site location: difference Fourier map Flack parameter: -0.04 (12)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Cl1	0.29548 (4)	0.3691 (3)	0.97142 (12)	0.0657 (4)
C12	0.10409 (7)	0.8942 (4)	0.69084 (13)	0.0830 (5)
N1	0.14698 (14)	0.5722 (9)	0.8609 (3)	0.0479 (9)
N2	0.11700 (14)	0.2081 (9)	1.0330 (3)	0.0468 (9)
H2	0.0985	0.2817	0.9747	0.056*
F1	-0.00073 (16)	-0.4220 (10)	1.3695 (4)	0.1088 (14)
01	0.20091 (13)	0.1700 (12)	1.1055 (4)	0.0917 (17)
C1	0.17010 (17)	0.2639 (11)	1.0316 (4)	0.0491 (11)
C2	0.18767 (17)	0.4557 (11)	0.9264 (4)	0.0449 (11)
C3	0.24053 (16)	0.5164 (10)	0.8958 (4)	0.0430 (10)
C4	0.2520 (2)	0.7023 (11)	0.7983 (4)	0.0523 (11)
H4	0.2873	0.7439	0.7771	0.063*
C5	0.2098 (2)	0.8244 (12)	0.7333 (5)	0.0566 (12)
H5	0.2157	0.9518	0.6680	0.068*
C6	0.15852 (18)	0.7482 (11)	0.7701 (4)	0.0493 (11)
C7	0.08862 (17)	0.0410 (10)	1.1205 (4)	0.0418 (10)
C8	0.1042 (2)	0.0484 (13)	1.2409 (5)	0.0595 (13)
H8	0.1342	0.1585	1.2654	0.071*
C9	0.0732 (2)	-0.1150 (15)	1.3226 (5)	0.0756 (17)
H9	0.0829	-0.1168	1.4030	0.091*
C10	0.0290 (2)	-0.2722 (14)	1.2864 (6)	0.0714 (16)
C11	0.0144 (2)	-0.2826 (13)	1.1691 (6)	0.0688 (15)
H11	-0.0155	-0.3947	1.1457	0.083*
C12	0.04429 (18)	-0.1262 (13)	1.0851 (5)	0.0559 (13)
H12	0.0346	-0.1332	1.0048	0.067*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0458 (6)	0.0924 (10)	0.0588 (7)	0.0066 (6)	0.0025 (6)	0.0119 (8)
Cl2	0.0762 (9)	0.0970 (11)	0.0756 (10)	-0.0019 (8)	-0.0244 (8)	0.0324 (9)
N1	0.052 (2)	0.050 (2)	0.042 (2)	-0.0034 (18)	0.0024 (18)	0.0056 (19)

supplementary materials

N2	0.0447 (19)	0.055 (2)	0.040 (2)	-0.0029 (17)	-0.0053 (16)	0.0082 (18)
F1	0.110 (3)	0.108 (3)	0.108 (3)	-0.014 (2)	0.051 (2)	0.036 (2)
01	0.048 (2)	0.148 (5)	0.079 (3)	0.003 (2)	-0.0076 (18)	0.068 (3)
C1	0.044 (2)	0.055 (3)	0.048 (3)	0.003 (2)	0.000 (2)	0.007 (2)
C2	0.047 (2)	0.055 (3)	0.032 (2)	0.005 (2)	0.0023 (18)	0.000 (2)
C3	0.049 (2)	0.043 (2)	0.037 (2)	-0.0003 (19)	0.0002 (19)	-0.0018 (18)
C4	0.056 (3)	0.058 (3)	0.043 (3)	-0.007 (2)	0.009 (2)	0.001 (2)
C5	0.071 (3)	0.057 (3)	0.042 (3)	-0.008 (2)	0.001 (2)	0.011 (2)
C6	0.054 (3)	0.052 (3)	0.042 (3)	-0.003 (2)	-0.006 (2)	0.001 (2)
C7	0.047 (2)	0.037 (2)	0.042 (3)	0.0010 (19)	0.009 (2)	0.0005 (19)
C8	0.054 (3)	0.073 (4)	0.052 (3)	-0.004 (3)	0.003 (2)	0.005 (3)
C9	0.082 (4)	0.096 (5)	0.049 (3)	0.008 (3)	0.017 (3)	0.018 (3)
C10	0.072 (4)	0.065 (4)	0.078 (4)	0.004 (3)	0.034 (3)	0.017 (3)
C11	0.053 (3)	0.062 (3)	0.092 (5)	-0.010 (2)	0.017 (3)	-0.001 (3)
C12	0.049 (3)	0.062 (3)	0.057 (3)	-0.007(2)	0.003 (2)	-0.002(2)

Geometric parameters (Å, °)

Cl1—C3	1.734 (4)	C4—H4	0.9300
Cl2—C6	1.741 (5)	C5—C6	1.383 (6)
N1—C6	1.305 (6)	С5—Н5	0.9300
N1—C2	1.351 (6)	C7—C12	1.383 (7)
N2—C1	1.346 (5)	C7—C8	1.400 (7)
N2—C7	1.411 (6)	C8—C9	1.393 (7)
N2—H2	0.8600	C8—H8	0.9300
F1-C10	1.356 (6)	C9—C10	1.361 (9)
01—C1	1.200 (5)	С9—Н9	0.9300
C1—C2	1.508 (6)	C10—C11	1.360 (9)
C2—C3	1.387 (6)	C11—C12	1.379 (8)
C3—C4	1.389 (6)	C11—H11	0.9300
C4—C5	1.385 (7)	C12—H12	0.9300
C6—N1—C2	118.6 (4)	N1—C6—Cl2	116.1 (3)
C1—N2—C7	126.5 (4)	C5—C6—Cl2	118.7 (4)
C1—N2—H2	116.7	C12—C7—C8	120.6 (4)
C7—N2—H2	116.7	C12—C7—N2	118.4 (4)
01—C1—N2	124.0 (4)	C8—C7—N2	120.9 (4)
01—C1—C2	122.7 (4)	C9—C8—C7	117.6 (5)
N2-C1-C2	113.3 (4)	С9—С8—Н8	121.2
N1-C2-C3	120.5 (4)	С7—С8—Н8	121.2
N1-C2-C1	114.5 (4)	C10—C9—C8	120.9 (5)
C3—C2—C1	125.1 (4)	С10—С9—Н9	119.5
C2—C3—C4	120.1 (4)	С8—С9—Н9	119.5
C2—C3—C11	124.0 (3)	F1-C10-C11	119.9 (6)
C4—C3—C11	115.9 (3)	F1—C10—C9	118.9 (6)
C5—C4—C3	118.7 (4)	C11—C10—C9	121.3 (5)
С5—С4—Н4	120.6	C10-C11-C12	119.7 (5)
С3—С4—Н4	120.6	C10—C11—H11	120.2
C6—C5—C4	116.9 (5)	C12—C11—H11	120.2
С6—С5—Н5	121.6	C11—C12—C7	119.9 (5)

C4—C5—H5	121.6	C11—C12—H12	120.0
N1—C6—C5	125.2 (5)	C7—C12—H12	120.0
C7—N2—C1—O1	1.7 (8)	C2—N1—C6—Cl2	-179.2 (3)
C7—N2—C1—C2	-178.8 (4)	C4—C5—C6—N1	0.2 (8)
C6—N1—C2—C3	-1.6 (7)	C4—C5—C6—Cl2	-179.6 (4)
C6—N1—C2—C1	178.1 (4)	C1—N2—C7—C12	-147.3 (5)
01-C1-C2-N1	-172.2 (5)	C1—N2—C7—C8	33.9 (7)
N2-C1-C2-N1	8.3 (6)	C12—C7—C8—C9	-0.7 (8)
O1—C1—C2—C3	7.5 (8)	N2-C7-C8-C9	178.1 (5)
N2-C1-C2-C3	-172.0 (4)	C7—C8—C9—C10	-0.9 (9)
N1-C2-C3-C4	1.1 (7)	C8—C9—C10—F1	-178.5 (5)
C1—C2—C3—C4	-178.5 (4)	C8—C9—C10—C11	2.0 (10)
N1-C2-C3-Cl1	-178.1 (3)	F1-C10-C11-C12	179.1 (5)
C1—C2—C3—Cl1	2.3 (7)	C9-C10-C11-C12	-1.4 (9)
C2—C3—C4—C5	0.1 (7)	C10-C11-C12-C7	-0.2 (8)
Cl1—C3—C4—C5	179.3 (4)	C8—C7—C12—C11	1.3 (8)
C3—C4—C5—C6	-0.7 (7)	N2-C7-C12-C11	-177.5 (4)
C2—N1—C6—C5	0.9 (7)		

Hydrogen-bond geometry (Å, °)

D—H··· A	<i>D</i> —Н	H…A	$D \cdots A$	D—H···A
N2—H2…N1	0.86	2.17	2.606 (5)	111

